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Abstract

The monitoring of processes that exhibit non-stationary and/or time varying behaviour is discussed in this paper. It is shown that

the application of recursive partial least squares (RPLS) algorithms together with adaptive confidence limits can lead to a

considerable reduction in the number of false alarms. The integration of these algorithms into the multivariate statistical process

control (MSPC) framework is introduced and its extensions to multi-block approaches is discussed. Example studies are given with

respect to a simulation of a fluid catalytic cracking unit and the analysis of data obtained from an industrial distillation process.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Modern industrial processes, often present a large
number of measured variables, such as temperatures,
pressures, flow-rates and compositions, which are
sampled at appropriate time intervals, typically 1min.
This creates huge amounts of process data (MacGregor,
Marlin, Kresta, & Skagerberg, 1991), which must be
analysed on-line or archived for subsequent analysis.
Identifying and troubleshooting abnormal operating
conditions by direct observation of the process variables
is difficult with such large amounts of data, particularly
since the variables are usually highly correlated (Piovoso
& Kosanovich, 1992).
Multivariate statistic process control (MSPC) meth-

ods are known to be effective for detecting and
diagnosing abnormal operating conditions in the above
circumstances (MacGregor et al., 1991; Martin &
Morris, 1996; Wise & Gallagher, 1996). Two of the
most commonly used MSPC methods are principal
component analysis (PCA) and partial least squares
(PLS), (Kresta, MacGregor, & Marlin, 1991; MacGre-
gor & Kourti, 1995; Kourti & MacGregor, 1995).

Applications of PCA or PLS for process monitoring
are based on a predefined PCA or PLS model that has
been produced from the analysis of reference data on the
process. Both methods are able to reveal linear relation-
ships between the process variables by utilising a
reduced set of ‘‘artificial’’ (or ‘‘latent’’) variables,
(Wise & Gallagher, 1996; Martin & Morris, 1996).
Based on these ‘‘artificial’’ variables, univariate
statistics that relate to the squared prediction error
(SPE) and the Hotelling’s T2 statistic can be generated
to monitor the process. In order to discriminate
normal from abnormal behaviour, statistical
confidence limits for each of the univariate statistics
must be calculated. Violations of these limits are
considered to be indicative of abnormal behaviour.
The confidence limits relate generally to the statistical
properties of the process variables and are defined
typically in terms of the percentage (often 5% or 1%) of
data points that fall outside certain thresholds in a given
time interval.
Gallagher, Wise, Butler, White, and Barna (1997)

highlighted that most industrial processes are time
varying and thus require an adaptive rather than a
fixed model. For the monitoring of such processes, it is
required that the model can be updated to accommodate
time varying behaviour while still being able to detect
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abnormal behaviour defined according to confidence
limits which may also have to vary with time.
Another problem that frequently arises is that of non-

stationary process behaviour. A potential cause of such
behaviour is a varying throughput. Examples of such
behaviour are considered in the application studies
presented in this paper.
Whilst several approaches have been developed to

address time varying process behaviour, little considera-
tion has been given to non-stationary process behaviour.
This paper introduces a novel approach that can be
applied in cases where the process is non-stationary and/
or time varying. A brief review of approaches that tackle
time varying process behaviour is presented and
analysed below.
Qin (1998) discussed the integration of a

moving window approach into the recursive PLS
algorithm. This approach gives rise to the identifi-
cation of a PLS model on the basis of a data set that is
within a selected window. Problems that may arise are
as follows:

(i) the process monitoring results can be different for
different window sizes,

(ii) previous data that is representative of normal
process behaviour is discounted in favour of new
data which may not be as representative

(iii) a heavy computational effort may be required for
updating the model.

Wold (1994) developed an exponentially weighted
moving average (EWMA) approach for PCA and PLS.
For EWMA models, more recent observations receive a
larger weighting than earlier ones. In order to avoid
unwarranted adaptation of the PCA/PLS model, Wold
(1994) proposed a technique in which older PCA/PLS
models are conserved and utilised for the determination
of updated PCA/PLS models. Particularly for time
varying process behaviour, however, older process
models do not accurately represent the relationships
between the process variables and hence, conserving
older process models may not be useful in this context.
An additional problem of this EWMA technique is that
of the parameter selection. If the parameters are chosen
are so that the EWMA technique can accommodate
strong variations of the process, it may not be sensitive
in detecting abnormal process behaviour and vice-versa.
Therefore, the EWMA PCA or PLS approach may be
difficult to implement in practice unless sufficient a
priori knowledge of abnormal process behaviour is
provided so that the parameter and/or the integration of
‘‘old conserved’’ models can be chosen and/or incorpo-
rated.
A recursive algorithm for PLS was presented first by

Helland, Berntsen, Borgen, and Martens (1991). When
new observations become available, the PLS model is
updated recursively. Improvements of the recursive PLS

(RPLS) approach are discussed in (Dayal & MacGre-
gor, 1997; Qin, 1993, 1998).
In this paper, the application of RPLS is considered

to address non-stationary and time varying process
behaviour. The application of RPLS to monitoring
industrial processes has not received significant atten-
tion in the research literature. Whilst the RPLS
approach can address the problem of time varying
process behaviour, it will not overcome the problem of
non-stationary process behaviour as will be demon-
strated in this paper.
A recursive PCA (RPCA) approach has been

presented by Li, Yue, Valle-Cervantes, and Qin, (2000)
for adaptive process monitoring. In addition, the
confidence limits of the monitoring statistics have also
been generated adaptively. In an application study
concerned with an annealing process in semiconductor
processing it was observed that PCA led to an
unacceptable number of false alarms. In contrast,
RPCA in conjunction with adaptive confidence limits
could eliminate false alarms while events that are
considered abnormal could still be detected. It is shown
in this paper that time varying process behaviour can be
adequately accommodated by adapting the linear
relationships between the process variables. However,
the approach by Li et al. (2000) may run into difficulties
if the process shows non-stationary process behaviour
that naturally occurs.
The contributions of this paper are as follows.

Firstly, the RPLS modelling technique is integrated
into the MSPC framework. Secondly, the inclusion
of an offset term for the RPLS approach, as
proposed by Qin (1998), is revisited and further
analysed. Thirdly, the RPLS algorithm is further
developed into a recursive multi-block PLS (MBPLS)
algorithm. Fourthly, an adaptation of the confi-
dence limits is presented. On the basis of the
recursive adaptation of the process model and the
adaptation of confidence limits, a novel monitoring
approach is finally introduced and applied to two
application studies.
MBPLS, discussed for instance in (Wangen &

Kowalski, 1988; Westerhuis, Kourti, & MacGregor,
1998; Qin, Valle, & Piovoso, 2001) is designed to further
divide the process variables, for example to represent
individual operating units, of the process. The recursive
MBPLS or RMBPLS algorithm can therefore estimate
the contribution of individual operating units to an
abnormal process event and hence simplify the diagnosis
of that behaviour (MacGregor, Jaeckle, Kiparissides, &
Koutoudi, 1994).
It should be noted that the recursive monitoring

approach, presented in this paper, differs from the
RPCA approach by Li et al. (2000), as the confidence
limits are not determined on the updated PCA
model. The new approach adapts the confidence limits
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using a moving window technique. The length
of the moving window, however, is crucial to the
adaptation of the confidence limits. If the window
length is too short, the approach may adapt to abnormal
behaviour, which should be detected. In contrast, if the
window length is too long, the approach may lead to
false alarms.
The paper is divided into six sections. Section 2

presents a review of the PLS and the MBPLS algorithm
and their associated monitoring statistics. Section 3 then
demonstrates how conventional PCA/PLS approaches
give rise to false alarms when the process behaves non-
stationary or the process is time varying. This demon-
stration is based on two simplified examples. Section 4 is
concerned with how to utilise a recursive process model
for process monitoring, how to develop an RMBPLS
model on the basis of a given RPLS model, how to
determine univariate statistics for RPLS and RMBPLS
and how to adapt the confidence limits for each
univariate statistic. This is followed by a presentation
of a realistic simulation of a fluid catalytic cracking unit
and data obtained from an industrial distillation process
in Section 5. Conclusions are drawn in Section 6 along
with suggestions for further work.

2. Process monitoring using PLS and MBPLS

Wold (1966) pioneered the PLS approach in the mid
1960s and the first multiblock extensions to PLS were
introduced in the late 1970s and early 1980s (Gerlach,
Kowalski, & Wold, 1979; Frank, Feikema, Constantine,
& Kowalski, 1994).
For PLS, the process data are divided into two

blocks, one block containing the process input or
predictor variables and the other block containing
the output or response variables. In contrast,
for applications of MBPLS, the process data are
divided into three or more blocks, each of which
represents an operating unit of the process (MacGregor
et al., 1994).

2.1. Partial least squares

The PLS approach relies on decomposing the
predictor matrix, XARK�M ; and the response matrix,
YARK�N ; to sums of rank one component matrices,
(Geladi & Kowalski, 1986). K is the number of
measurements, N is the number of response variables
and M is the number of predictor variables. Typically, X
and Y are mean centred and appropriately scaled prior
to the identification procedure. The PLS decomposition

of X and Y results in the following:

X ¼
Xn

i¼1

*Xi þ Fn ¼
Xn

i¼1

tip
T
i þ Fn

¼ TnP
T
n þ Fn ¼ Xn þ Fn;

Y ¼
Xn

i¼1

*Yi þ En ¼
Xn

i¼1

#uiq
T
i þ En

¼ #UnQ
T
n þ En ¼ #Yn þ En; ð1Þ

where n is the number of rank one component matrices,
*Xi ¼ tipTi and *Yi ¼ #uiq

T
i ; retained in the decomposition.

The vectors ti and #ui are referred to as the t-score vector
and the predicted u-score vector, the vectors pi and qi;
are loading vectors, Xn and #Yn represent the sum of n

the rank one component matrices to reconstruct the
predictor matrix and predict the response matrix,
respectively, and En and Fn are residual matrices. The
predicted u-score vectors, #ui; can be estimated from the
t-score vectors as follows:

#Un ¼ ½#u1^ y ^#un� ¼ ½t1b1^ y ^tnbn� ¼ TnBn; ð2Þ

where Bn represents a diagonal matrix containing the
regression coefficients of the score model, bi; determined
by the PLS algorithm.
Several algorithms have been proposed to determine

the score and loading vectors, among which the
NIPALS (Geladi & Kowalski, 1986) and the SIMPLS
(de Jong, 1993) algorithms are the most popular ones.
Most industrial processes present strongly correlated

variables and often only a few t-score vectors are needed
to describe most of the process variation. The number of
retained t-score vectors is typically determined by cross-
validation or the analysis of variance, as demonstrated
for example by (MacGregor et al., 1991; MacGregor &
Kourti, 1995; Morud, 1996). Note that the scores are
often referred to as latent variables, i.e. each score vector
represents instances of a particular latent variable
or LV.

2.2. Multiblock partial least squares

The multiblock extension of PLS leads to a division of
the predictor and response variables into blocks as
schematically shown in Fig. 1 for grouping predictor
variables only. These blocks may correspond to
individual operating units of the process and therefore
multiblock PLS or MBPLS simplifies the monitoring
task by reducing the number of variables to be
considered.
The example that is presented in Fig. 1 illustrates that

the u-score vector is regressed on each ‘‘predictor block’’
to determine the weight vectors for each block:

wb ¼
XT

b u

uTu
; ð3Þ
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where Xb and wb represents the bth predictor block and
its associated weight vector, respectively. Subsequently,
the t-score vectors for each predictor block are
calculated as the matrix-vector product of the bth
predictor matrix and bth weight vector. The t-score
vectors for each block are then stored into a block score
matrix, T; i.e. T ¼ ½t1;y; tB�; where B is the total
number of predictor blocks. This is followed by
determining a regression vector for predicting the u-
score vector on the basis of the block score matrix by
applying the least squares solution:

#u ¼ TwT : ð4Þ

The predicted u-score vector is often referred to as
‘‘super’’ t-score vector tT : In a similar fashion to the PLS
algorithm, the above procedure may also be carried out
iteratively, initiated by selecting the u-score vector as
some column of Y. The iteration procedure has
converged when the difference between two successively
determined u-score vectors is negligible. In this paper,
the division of the predictor variables into predictor
blocks is considered and the corresponding MBPLS
algorithm is presented in the appendix. After calculating
each latent variable, the super score is deflated from
each predictor block and response block.
It was shown that the above MBPLS approach and

the conventional PLS algorithm provide equivalent
results when the division of the predictor matrix into
‘‘predictor blocks’’ is inverted, (Westerhuis et al., 1998;
Qin et al., 2001). More precisely, the super-score vectors
tT obtained from MBPLS are equivalent to the t-score
vectors obtained from PLS.

2.3. Monitoring statistics for PLS and MBPLS

The monitoring of industrial processes usually relies
on univariate statistics such as the Hotelling’s T2 or in
short T2 statistic and the SPE statistic, (Wise &
Gallagher, 1996; Martin & Morris, 1996). For PLS,

the T2 statistic is constructed from the t-score variables
and residuals of both, the predictor variables and the
response variables, give rise to individual SPE statistics
(MacGregor et al., 1991). The definition of these
statistics is as follows:

T2
k ¼ sTk K�1

n sk;

SPE
ðX Þ
k ¼ jjnk � nðnÞk jj22;

SPE
ðY Þ
k ¼ jjwk � #wðnÞ

k jj22;

ð5Þ

where T2
k ;SPE

ðX Þ
k and SPE

ðY Þ
k represent the T2 and the

SPE statistics of the predictor and the response
variables, respectively, sk; nk and wk are vectors that
store the calculated values of the t-score variables and
the measured values of the predictor and response
variables of the kth data point, respectively. Further-
more, nðnÞk and #wðnÞ

k are vectors that store the predicted
values of the predictor and response variables of the kth
data point, Kn is the covariance matrix of the n retained
t-score variables and jj jj22 represents the squared norm of
a vector.
With these statistics, the overall process variation,

incorporated in the T2 statistic, can be observed as well
as departures of the model prediction from the current
process behaviour, represented by the SPE statistics.
With MBPLS, each of the predictor blocks presents a

T2 statistic and a SPE statistic so that an individual
monitoring of operating units can be achieved. Addi-
tionally, the residuals of the response variables present a
SPE statistic.
Abnormally large T2 values represent an excessive or

abnormal variation of the predictor variables (or some
of the predictor variables) and therefore an excessive or
abnormal variation of the entire process. In contrast,
large SPE(X ) values indicate a change in the relationship
between the predictor variables (or some of the predictor
variables) and abnormally large SPE(Y ) values corre-
spond to a mismatch between past process operation,
when the PLS or MBPLS process model was deter-
mined, and present process operation.

3. Non-stationary and time varying process behaviour

In this section, the difficulties of monitoring non-
stationary and time varying processes with conventional
PLS are demonstrated on the basis of two simple
examples in which two predictor and two response
variables are considered. In order to simulate non-
stationary process behaviour, the signals of both
predictor variables are initially equal and constructed
from the following AutoRegressive Integrated Moving
Average (ARIMA) signal (Box & Jenkins, 1970):

uARIMAðz�1Þ ¼
1þ az�1

ð1þ bz�1Þð1� z�1Þ
eðz�1Þ; ð6Þ

Fig. 1. MBPLS method with multiple predictor blocks and a single

response block.
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where uARIMAðz�1Þ represents the ARIMA signal in the
z-transform domain, eðz�1Þ represents a normally dis-
tributed random signal of zero mean and unit variance,
i.e. eðz�1ÞANf0; 1g; a and b are parameters and z�1 is
the back-shift operator. A normally distributed random
signal of zero mean and a variance of 0:2;Nf0; 0:2g; is
then superimposed on each of the predictor variables
and hence both predictor variables are highly correlated.
The response variables are then determined as linear
combinations of the predictor variables:

c1k

c2k

 !
t

¼
c11 c12

c21 c22

" #
x1k

x2k

 !
t

;
x1k

x2k

 !
t

¼
uk

uk

 !
þ

e1k

e2k

 !
; ð7Þ

where x1k; x2k and c1k; c2k are the values of the
predictor and response variables and uk; e1k and e2k are
the value of the ARIMA signal and the two super-
imposed random signals for the kth instance in time,
respectively. The subscript t refers to the true values of
the predictor and the response variables and c11 to c22
are constant parameters.
After the true predictor and response signals are

computed, each process variable is augmented by adding
a normally distributed random signal of zero mean and
a variance of 0:1;Nf0; 0:1g to account for measurement
noise:

x1k

x2k

 !
m

¼
x1k

x2k

 !
t

þ
e3k

e4k

 !
and

c1k

c2k

 !
m

¼
c1k

c2k

 !
t

þ
e5k

e6k

 !
; ð8Þ

where m denotes the measured values and e3k to e6k are
the kth instances of added random signals to the
predictor and the response variables. Given the de-
scribed construction of the predictor variables, it is clear
that only one LV is required to determine a sufficiently
accurate process model.
A second data set, simulating stationary and time

varying process behaviour, was constructed as follows.
Both predictor variables were initially equivalent and
obtained from a single AutoRegressive Moving Average
(ARMA) signal (Box & Jenkins, 1970):

uARMAðz�1Þ ¼
1þ az�1

1þ bz�1
eðz�1Þ; ð9Þ

where uARMAðz�1Þ represents the ARMA signal. Both
predictor variables were then augmented by adding
uncorrelated normally distributed random signals of
zero mean and a variance of 0:2;Nf0; 0:2g: The
response variables were then obtained as linear combi-
nations of the predictor variables as shown in Eq. (7). In
order to represent measurement noise, the true signals
received a normally distributed random signal of zero

mean and a variance of 0:1;Nf0; 0:1g as shown in
Eq. (8). The time varying process behaviour was
achieved by adding a ramp signal to c22 after a certain
number of data points were recorded. Each of the
simulated data sets contained 1000 data points and an
initial process model was obtained using the first 200
data points. The parameters a and b for both, the
ARIMA and the ARMA signal, were selected to be 0.5
and the parameters c11; c12; c21 and c22 were chosen to be
�0.2, 0.3, 0.1 and �0.05, respectively. The ramp signal
with an increment of 0.005 was added to c22 after 500
data points were simulated.

3.1. Non-stationary process behaviour

The results of monitoring the non-stationary process
with conventional PLS are illustrated in Fig. 2. For the
SPE statistics, the number of violations of the 99%
confidence limit is less than 10 and the number of
violations of the 95% confidence limit is less than 50.
Therefore, less than 1% and 5% of the data points
violate their respective confidence limits. However, the
T2 statistic indicates violations of the confidence limits
for long sequences of the data points after the first 380
data points whereas they are in fact due to the non-
stationary character of the process. Note that the
relationships between the process variables did not
change throughout the simulation. In contrast, the
process variation is excessive; thus the process variables
manoeuvre into operating regions that were not present
when the confidence limits were established. Conse-
quently, the T2 statistic violates the confidence limits
shortly after their determination.
The RPCA approach by Li et al. (2000) adapts the

confidence limit of the T2 statistic based on a varying
number of retained PCs. Hence, this approach may not

Fig. 2. Process monitoring of a non-stationary process using PLS.
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eliminate false alarms when the process behaves in a
non-stationary way. An example is presented in Fig. 3
for which the approach by Li et al. (2000) is applied to
the same data set. A strong violation of the 99%
confidence limit is evident between the 380th and the
500th data point and around the 880th data point
although the process does not behave abnormally.
Consequently, the confidence limits of the T2 statistic
need to be adapted to accommodate non-stationary
process behaviour. Note that the decrease in the SPE

statistic is a consequence of the sharp increase in the
variance of process variable after the 380s data point.
An adaptation of the confidence limits for the PLS
monitoring statistics is proposed in this paper and
presented in Section 4.3.

3.2. Time varying process behaviour

The results of monitoring the time varying process
with conventional PLS are shown in Fig. 4. It can be
seen from this figure that the SPEðY) statistic violates its
confidence limits shortly after the step change of one of
the linear coefficients is superimposed with a ramp
signal after the 500th data point was recorded. This
implies that the process gradually deviates from its
behaviour when the PLS model and the confidence
limits were established.
The response of the SPEðY) statistic is to be expected,

as the predictor variables, and consequently the T2 and
SPEðX) statistics, are not affected by the changes in the
process behaviour. This example highlights that an
adaptation of the process model has to be considered,
which is proposed in the next section.

4. Process monitoring using recursive PLS algorithms

As discussed in the previous section, adaptation of the
process model is required to address time varying

process behaviour. In this section, recursive applications
of the PLS algorithm are reviewed, which are designed
to adapt the process model when new data points
become available. Qin (1998) suggested the incorpora-
tion of an offset term as an additional predictor variable
to compensate for changes in the mean value of each
process variable. This is revisited and analysed with the
introduction of a novel way of recursively updating a
MBPLS model.

4.1. Recursive PLS

Recursive PLS algorithms were first reported in the
early 1990s, (Helland et al., 1991) and improvements are
presented in (Dayal & MacGregor, 1997; Qin, 1993,
1998). RPLS algorithms allow an existing PLS model to
be updated as new observations become available. Qin
(1998) showed that: ‘‘given a PLS model
fX;Yg-PLSfT;W;P;B;Qg and a new data pair
fx1; y1g; performing PLS regression on data pair

PT

x1

� �
;
BQT

y1

� �
results in the same regression model as

performing PLS regression on data pair
X

x1

� �
;
YT

y1

� �
’’.

This leads to a considerable reduction in the compu-
tational effort required to identify an updated RPLS
model. Note that the weight vectors of the PLS model
are stored as column vectors in W and that each of the
above PLS matrices contain the maximum number of
LVs (Qin, 1998). Qin (1998) further highlighted that
introducing an offset term as an additional predictor
variable may accommodate changes in the mean value.
This is revised below.

Fig. 3. Process monitoring of a non-stationary process using RPCA.

Fig. 4. Process monitoring of a time varying process using PLS.
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4.1.1. Considerations for augmenting a set of predictor

variables by an offset term

Given the following assumptions:

1. over the operating region which is to be monitored,
there are linear relationship between the predictor
and the response variables and,

2. if each predictor variable is equal to zero (plant
shutdown) then the response variables are also equal
to zero,

the true steady state relationship of the process is as
follows:

w ¼ An; ð10Þ

where nARM and wARN store the predictor and
response variables, respectively, and AARN�M repre-
sents the linear steady-state relation between these
variables. Introducing mean centring and scaling of n
and w gives rise to:

n� ¼ Rxðn � nÞ and w� ¼ Rcðw � wÞ ð11Þ

for which n� and w� represent the mean centred and
scaled predictor and response variables, respectively, n
and %w are vectors storing the mean values and Rx and
Rc are diagonal matrices storing the scaling factors of
the predictor and response variables. Note that n� and
w� are obtained prior to the determination of the steady-
state process model. Substituting Eq. (11) into Eq. (10)
leads to:

R�1
c w� þ w ¼ AðR�1

x n� þ nÞ or

w� ¼ RcAR�1
x n� þ RcðAn � wÞ: ð12Þ

The expression An � w is clearly zero if the steady-
state relationships, A� ¼ RcAR�1

x ; between the predictor
and response variables remains time invariant. There-
fore, an offset term is not required if the process is non-
stationary but time-invariant. In contrast, an offset
term, that represents RcðAn � wÞ is required if the
process exhibits time varying behaviour, i.e. the
elements of A change with time.
Each time the PLS model is recursively updated, the

number of retained LVs has to be determined. Since the
RPLS algorithm requires the maximum number of LVs
to be retained (Qin, 1998), the number of LVs for the
RPLS algorithm may be selected on the basis of the
variance captured by each LV in the predictor and
the response block as advocated by MacGregor et al.
(1991). In fact, the number of LVs determines how many
degrees of freedom are incorporated in the predictor
variables that influence the response variables. Since
the predictor variables are assumed to be correlated, the
number of retained LVs is usually smaller than the
number of predictor variables (MacGregor et al., 1991).
Even under the assumption that the process is time
varying and/or shows non-stationary behaviour, the
number of degrees of freedom within the predictor

variables that influence the response variables is unlikely
to change unless the process behaviour changes drasti-
cally. It is therefore assumed that the number of LVs is
not time varying. In this paper, the number of LVs is
determined on the basis of a sufficiently large reference
data set recorded from the process under investigation.

4.2. Recursive MBPLS

Since the conventional MBPLS model can be
converted into an equivalent PLS model, (Westerhuis
et al., 1998; Qin et al., 2001), it is possible to use the
RPLS approach as discussed in the previous section and
then divide the predictor variables into blocks that
represent individual operating units of the process. In
this paper, the MBPLS algorithm that is discussed in
Westerhuis et al. (1998) is used along with the RPLS
algorithm that is presented by Qin (1998). It should be
noted that an RMBPLS algorithm could also be
established without the integration of the RPLS algo-
rithm. This, however, would be computationally less
efficient, as discussed by Westerhuis et al. (1998)
and Qin et al. (2001), for integrating conventional
PLS into the MBPLS algorithm. The integration of
RPLS into MBPLS forms a recursive MBPLS or
RMBPLS algorithm that can provide multiple predictor
blocks and a single response block and is illustrated in
Table 1.
The iteration process is initiated by calculating a PLS

model at first using a small reference data set, which
contains 200 sampling points for instance. The w-weight
and the p-loading matrices is then separated into the
corresponding predictor blocks to form the initial
MBPLS model. If a new sample point becomes
available, the initial PLS model is recursively updated
as discussed in the previous section and the resultant w-
weight and p-loading matrices are again divided into the
corresponding predictor blocks.
The process of recursively updating the PLS model

and the successive division of the w-weight and p-
loading matrices into the corresponding predictor
blocks is applied for every new sample that is obtained
from the process.

4.3. Adaptive confidence limits

Li et al. (2000) introduced an adaptation of the
confidence limits for the monitoring statistic on the basis
of a recursive PCA approach. However, the simplified
applications study in Section 3 demonstrated that non-
stationary process behaviour requires an improved
adaptation of the confidence limits, particularly for the
T2 statistic. Such an approach is introduced below.
MacGregor and Kourti (1995) highlighted that, under

the assumption that the process variables are normally
distributed, the univariate statistics, introduced in
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Eq. (5), follow a central Chi-Squared distribution. As
each of the univariate statistic represents a sum of
squared values, the confidence limits can be obtained on
the basis of the theorems developed by Box (1954).
Given a univariate statistic, z > 0 along with its mean
value %z; and its variance sz; the confidence limits that
represent a confidence of (1� aÞ is as follows:

zð1�aÞ ¼ gw2ða; hÞ; ð13Þ

where zð1�aÞ represents the confidence limit, g ¼
ðsz=2%zÞ; h ¼ ð2%z2=szÞ and w2 denotes the Chi-Squared
distribution function. The confidence ð1� aÞ is typically
selected to be 95% and 99%, i.e. a ¼ 0:05 or 0.01.
In order to adapt the confidence limits, the following

approach may be applied. Consider a section of
measured data that is close to the current instance, k;
the confidence limits can be estimated on the basis of
this portion by applying Eq. (13). Given that the
number of data points that are considered is L; this
section is defined as:

Sk ¼ fzk�L;y; zk�1g; ð14Þ

where Sk represents the section of contiguously deter-
mined values of the univariate statistic z that is used to
determine the confidence limits for the kth value, zð1�aÞ

k :
Since the most currently obtained values of z correspond
to the present performance of the process more closely
than those values of z that are obtained earlier, the
selection of Sk is expedient. The confidence limits for zk

can then been determined by calculating gk and hk—see
Eq. (13) on the basis of Sk:
If a new data point becomes available, the previous

value of z; zk; is added as an extra element to Sk and the
element zk�L is eliminated. This forms the section of
Skþ1 for obtaining the confidence limits for the ðk þ 1Þth
value of the univariate statistic, zð1�aÞ

kþ1 ; by calculating
gkþ1 and hkþ1: This procedure is similar to a moving
window approach, however, the estimated statistical
parameter Bð1�aÞ

k is to be applied outside Sk:
The size of Sk clearly determines how slowly the

confidence limits are updated. Thus, L can be seen as a
parameter that ‘‘tunes’’ the speed of adaptation. It is
important to guarantee that the confidence limits are not
adapted too quickly so that abnormal but slowly
progressing process behaviour is adapted and thus,
making the introduced monitoring approach invalid. In
contrast, if the confidence limits are adapted too
quickly, false alarms may consequently occur. There-

fore, the recorded data set (reference data set) must be
large enough to capture variation that naturally occurs
so that L can be selected accordingly. The length L is
further referred to as window length.

4.4. Implementation of the introduced adaptive

monitoring approach

The procedure for implementing the introduced
monitoring scheme is summarised below with respect
to RPLS, followed by its multiblock extension
(RMBPLS).

4.4.1. Step 1 for RPLS: initialisation of the monitoring

scheme

The initial PLS model can be calculated from a small
data set that is part of the reference data set. It has to be
ensured, however, that this small data set captures
enough process variation to reveal the correlation
structure within the predictor variables so that the
significant LVs can be determined accordingly. After
that, the confidence limits can be computed by applying
Eq. (13). It is now required to apply a recursively-
updated model to the rest of the reference data in order
to select the window length L for each univariate
statistic. Note that L might vary for each univariate
statistic. This can be seen from the simple application
study corresponding to the non-stationary process
behaviour presented in Fig. 2. Note that the T2 statistic
shows much more significant variation than the SPE

statistics, which may lead to a different ‘‘L’’ for each
statistic.

4.4.2. Step 2 for RPLS: recursive adaptation of the

process model and the confidence limits

Given that the kth data point is available, compute
T2

k ; SPE
ðX Þ
k and SPE

ðY Þ
k on the basis of the ðk � 1Þth

process model. This is followed by calculating the
thresholds for each of the univariate statistics, i.e.

ð1�aÞT
2
k ; ð1�aÞSPE

ðX Þ
k and ð1�aÞSPE

ðY Þ
k on the basis of

S
ðT2Þ
k ;SðSPEðX ÞÞ

k and S
ðSPEðY ÞÞ
k ; respectively. Then, update

the associated monitoring charts by plotting the values
of the univariate statistics along with their thresholds.
The last step is to recursively adapt the ðk � 1Þth process
model by applying the RPLS algorithm, presented in
Section 4.1, in order to obtain the kth process model and

to establish S
ðT2Þ
kþ1 ;S

ðSPEðX ÞÞ
kþ1 and S

ðSPEðY ÞÞ
kþ1 :

Table 1

Illustration of the RMBPLS algorithm

1. Scale the data matrices {X,Y}.

2. Derive a PLS model using the algorithm presented by Qin (1998): X;Yf g- T;W;P;B;Qf g: Separate the PLS model into a corresponding

MBPLS model ½Xb�;Yf g- ½Tb;TT �; ½Wb;WT �; ½Pb�;B;Qf g and obtain corresponding statistic limits.

3. When a new pair of data {x1,y1} is available, scale it the same way as step 1. Let X ¼
PT

x1

� �
;Y ¼ BQT

y1

� �
and return to step 2.
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4.4.3. Step 1 for RMBPLS: initialisation of the

monitoring scheme

For the application of RMBPLS, the predictor
variables of the initial PLS model are divided to form
predefined predictor blocks. The corresponding mon-
itoring statistics, i.e. jT

2
1:m and SPE

ðXjÞ
1:m for the jth

predictor block and SPE
ðY Þ
1:m for the response block are

then determined along with the confidence limits for
each univariate statistic on the basis of the initial model
and the data set, containing m data points, from which
the initial model was obtained. As for the RPLS
implementation, the window length, L; needs to be
determined for each univariate statistic.

4.4.4. Step 2 for RMBPLS: recursive adaptation of the

process model and the confidence limits

Given that the kth data point is available, the
corresponding monitoring statistics, jT

2
k ;SPE

ðXjÞ
k for

the jth predictor block and SPE
ðY Þ
k for the response

block are established on the basis of the (k � 1)th
RMBPLS model. Then, the confidence limits for each
univariate statistic are determined by applying Eq. (13),
utilising S

ð1T2Þ
k ;SðSPEðX1 ÞÞ

k ;y;SðSPEðY ÞÞ
k : This is then fol-

lowed by updating the corresponding monitoring charts
by plotting 1T

2
k ;SPE

ðX1Þ
k ;y;SPEðY Þ along with their

confidence limits. Now, the RMBPLS model is updated
by dividing the predictor variables and the associated
weight and loading matrices of the kth RPLS model
into the predefined blocks and define S

ð1T2Þ
kþ1 ;

S
ðSPEðX1 ÞÞ
kþ1 ;y;SðSPEðY ÞÞ

kþ1 :
The introduced monitoring approach does not require

a substantial amount of data in order to determine the
initial model. In fact, only two data sets are required,
one for obtaining the initial model and the other to
determining the window length, L; as discussed above.
In contrast, the conventional MSPC approach requires a
sufficiently large amount of data to ensure that naturally
occurring variation is adequately represented otherwise
false alarms may occur even when the process behaves
normally, (Kourti & MacGregor, 1995; Kruger, Chen,
Sandoz, & McFarlane, 2001).

4.5. Non-stationary process behaviour

The application of the introduced monitoring ap-
proach to the data that are used in Section 3.1 to
describe non-stationary process behaviour is presented
in Fig. 5. The length of data section for adaptively
determining the confidence limits was selected to be 50.
Comparing Fig. 5 with Fig. 2, which shows the applica-
tion of the conventional monitoring approach, reveals
that the number of violations of the respective
confidence limits is less than 1% and 5%. Therefore,
the number of violations is greatly reduced so that no

out of statistical confidence situation arises for the entire
data set.
Fig. 6 shows that the RPCA approach by Li et al.

(2000) can accommodate non-stationary process beha-
viour if the confidence limits of the T2 limits are
adapted, in this example with a window length of 50, as
discussed in Section 4.3. The choice of RPLS in this
paper is based on the partitioning of the process
variables into predictor and response variables. This
can provide initial information to assist the diagnosing
of abnormal events as discussed in Section 5. In
particular, the application of RMBPLS can present
valuable information about the contribution of indivi-
dual process units to an abnormal event.

4.6. Time varying process behaviour

Fig. 7 presents the application of the introduced
monitoring scheme to the data that describe time
varying process behaviour, see Section 3.2. The super-
imposed ramp to one of the linear parameters for
determining the response variables can clearly be
accommodated by the recursive PLS algorithm. Addi-
tionally, the adaptation of the confidence limits for each
univariate statistic can accommodate variations that
occur as a consequence of the time varying process
behaviour and cannot be recursively adapted.
In cases where the RPLS model cannot adapt the

influence of time variant process behaviour rapidly
enough, a forgetting factor can be incorporated to
down-weight older data points and to give more
emphasis to newer data points. In contrast, if time
variant process behaviour is slowly progressing the
forgetting factor may also be selected to down-weight

Fig. 5. Process monitoring of a non-stationary process using RPLS

and adaptive determination of the thresholds.
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newer samples in order to give more emphasis on older
samples. Introducing a forgetting factor along with the
length L; however, requires considerably a priori
knowledge otherwise the monitoring approach may be
insensitive in detecting abnormal process behaviour. In
this paper, no forgetting factor was considered in any of
the presented application studies.

5. Application studies

In this section, two application studies are considered
to illustrate the benefits of the recursive PLS and
recursive MBPLS approaches along with an adaptation
of the confidence limits. The processes are firstly a

simulation of a fluid catalytic cracking unit (FCCU),
published by McFarlane, Reineman, Bartee, and Geor-
gakis (1993), and secondly an industrial distillation
process for purifying butane. The next subsection
introduces the principles of the processes. This is
followed by the details of how recursive PLS was
applied to both processes and how recursive MBPLS
was applied to the FCCU. Note that the ordinates of
each monitoring chart are presented logarithmically.
This is to reduce the sharp increase in corresponding
statistics, which occurs with the injection of occurrence
of abnormal process behaviours.

5.1. Description of the processes

5.1.1. The simulation of a fluid catalytic cracking unit

A fluid catalytic cracking unit or FCCU is an
important economic unit in refining operations. It
typically receives several different heavy feedstocks from
other refinery units and cracks these streams to produce
lighter, more valuable components that are eventually
blended into gasoline and other products. The particular
Model IV unit described by McFarlane et al. (1993) is
illustrated in Fig. 8. The principal feed to the unit is gas
oil, but heavier diesel and wash oil streams also
contribute to the total feed stream. Fresh feed is
preheated in a heat exchanger and furnace and then
passed to the riser, where it is mixed with hot,
regenerated catalyst from the regenerator. Slurry from
the main fractionator bottoms is also recycled to the
riser. The hot catalyst provides the heat necessary for
the endothermic cracking reactions. The gaseous
cracked products are passed to the main fractionator
for separation. Wet gas at the top of the main
fractionator is increased to the pressure of the down-
stream separation by the wet gas compressor. Separa-
tion of light components occurs in this downstream
separation section. As a result of the cracking process, a
carbonaceous material, coke, is deposited on the surface
of the catalyst, which depletes its catalytic property. For
this reason, spent catalyst is recycled to the regenerator
where it is mixed with air in a fluidised bed for
regeneration of its catalytic properties. Oxygen reacts
with the deposited coke to produce carbon monoxide
and carbon dioxide. Air is pumped to the regenerator
with a high-capacity combustion air blower and a
smaller lift air blower. In addition to contributing to the
combustion process, air from the lift air blower assists
with catalyst circulation. Complete details of the
mechanistic simulation model for this particular model
IV FCCU can be found in (McFarlane et al., 1993). This
was simulated in C.
The selected process variables for the FCCU case

study are given in Table 2. In order to obtain from the
simulation typical signals that exhibit non-stationary
character, various different ARIMA and ARMA signals

Fig. 7. Process monitoring of a time varying process using RPLS and

adaptive determination of the thresholds.

Fig. 6. Process monitoring of a non-stationary process using RPCA

with adaptive determination of both thresholds.
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were superimposed on the initial or calculated values of
the predictor variables as indicated in Table 3. The
predictor variables represent the feed section and the air
blower units of the FCCU.
In order to achieve time varying process behaviour,

two parameters within the model, i.e. the coke forma-
tion factor and the ambient air temperature were
modified by the addition of an ARIMA signal. Both
these parameters are not among the measured predictor
variables but clearly influence the performance of the

FCCU. The variation of the coke formation factor
influenced the amount of coke deposited on the catalyst
whereas changes in the ambient air temperature
influenced the performance of the air blowers and
subsequently the reaction conditions of the regenerator.
The response variables are listed in Table 2. A

complete list of measured variables of the FCCU system
may be found in (McFarlane et al., 1993). To simulate
measurement noise, an ARMA signal was added to each
of the process variables.

Fig. 8. Schematic diagram of the fluid catalytic cracking unit.

Table 2

Considered process variables of the FCCU case study

Variable No. Description

Predictor variables 1 Wash oil feed flowrate

2 Total fresh feed flowrate

3 Slurry flowrate

4 Preheater outlet temperature

5 Fresh feed temperature to riser

6 Furnace firebox temperature

7 Combustion air blower suction flowrate

8 Combustion air blower throughput

9 Combustion air flowrate

10 Lift air blower suction flowrate

11 Lift air blower speed

12 Lift air blower throughput

Response variables 13 Riser temperature

14 Wet gas compressor suction pressure

15 Wet gas compressor suction flowrate

16 Wet gas flowrate to vapour recovery unit

17 Regenerator bed temperature

18 Regenerator stack gas temperature

19 Regenerator pressure

20 Standpipe catalyst level

21 Stack gas O2 concentration

22 Combustion air blower discharge pressure

23 Wet gas composition suction valve position
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The FCCU simulator included several pre-pro-
grammed faults that could be applied on command.
The first was a 5% loss in combustion air blower
capacity. The second simulated a degradation in the
flow of regenerated catalyst between the regenerator and
riser, which is typically caused by partial or complete
plugging of steam injectors located in this line. The third
fault considered was a 5% decrease in the heat
exchanger coefficient, which simulates fouling in the
furnace. For each of these faults, a data set was
simulated containing 1150 data points at sampling
intervals of 1min. Each fault was injected after 950
data points of the recorded data set. This produced three
data sets, which will be referred to as Fault1, Fault2 and
Fault3.

5.1.2. An industrial distillation process

This distillation process, schematically shown in
Fig. 9, is designed to purify Butane from a fresh feed
comprising of a mixture of hydrocarbons, mainly
Butane and Hexane and impurities of Propane. The
distillation tower includes 33 trays with which the
separation is achieved. A purified Butane stream leaves
the distillation process as the top product and conse-
quently, the Hexane and impurities of Propane leave the
distillation process with the bottom draw.
The process operates at a single operating point and

the product quality refers to Hexane concentration in
the top draw. More precisely, the Hexane concentration
should be kept below a predefined limit. Furthermore,
to achieve an economic operation, it is desirable to
maintain the Butane concentration of the bottom draw
also below a specified limit.
Since there is no respective controller to regulate the

top and bottom concentrations of Hexane and Propane,
the process operation will be affected by changes in the
feed and the feed-temperature. It is clear that any
variation of these variables will eventually result in
undesired variation of the top and bottom draw
concentrations.

The predictor variables of this process are the flow
and the temperature of the fresh feed, the reflux flow and
the fuel flow within the reboiler. As response variables,
the temperatures, pressures, flow-rates and composi-
tions are selected and the process variables are as listed
in Table 4. Note that the circled numbers in Fig. 9
correspond to the process variables listed in Table 4.

5.2. Application of recursive PLS to the fluid catalytic

cracking unit

Before the recursive PLS approach can be applied to
the unit, an initial PLS regression model has to be

Table 3

Selected predictor variables for FCCU case study

No Predictor variable Added signal Initial value

1 Wash oil feed flowrate ARMA sequence 13.8 lb/s

2 Total fresh feed flowrate ARIMA sequence 126.0 lb/s

3 Slurry flowrate ARIMA sequence 5.25 lb/s

4 Preheater outlet temperature ARIMA sequence 460.91F

5 Fresh feed temperature to riser ARMA sequence 667.2611F

6 Furnace firebox temperature ARMA sequence 1607.551F

7 Combustion air blower suction flowrate ARMA sequence Calculated

8 Combustion air blower throughput ARMA sequence Calculated

9 Combustion air flowrate ARMA sequence Calculated

10 Lift air blower suction flowrate ARMA sequence Calculated

11 Lift air blower speed ARMA sequence Calculated

12 Lift air blower throughput ARMA sequence Calculated

Fig. 9. Schematic diagram of the industrial distillation process.

X. Wang et al. / Control Engineering Practice 11 (2003) 613–632624



established. The number of latent variables retained was
selected as advocated by MacGregor et al. (1991), i.e.
the contribution of the rank one component matrices to
the response matrix was analysed and the most
dominant LVs were selected and insignificantly con-
tributing LVs were discarded.
For the FCCU example study, the first 500 sampl-

ing points of the data set Fault1 were used to identify
the initial regression model. The contribution of the
rank one component matrices to the predictor and
the response matrices are summarised in Table 5.
Whilst the first 2 LVs contribute significantly to the
response matrix, the remaining LVs are only margi-
nally contributing, thus 2 LVs were retained. The
‘‘window’’ size for determining the thresholds for each
univariate statistic was selected to include the past 50
values.

5.2.1. Fault 1: loss of combustion air blower capacity

The procedure described in Section 4.4 was applied to
the first data set (Fault1). The RPLS monitoring charts
representing the loss of combustion air blower capacity
are given in Fig. 10, which shows that each of the
univariate statistics are strongly affected by this event.
The strongest response is observed in the SPEðX Þ

statistic. A much smaller response is seen in the T2

statistic, and the SPEðY Þ statistic shows still a significant
response. This makes physical sense as a loss of
combustion air blower capacity reduces the airflow into
the regenerator and hence reducing the regenerator
pressure. There are a number of consequences that are
associated with the reduction in regenerator pressure.
Firstly, the lift air blower increases its level of air
pumped into the spent catalyst line, secondly, less
oxygen is available for recycling the catalyst, which

Table 4

Considered process variables for the industrial distillation process

Variable

No.

Description

Predictor variables 1 Fresh feed flow

2 Temperature of fresh feed

3 Reflux flow

4 Reboiler steam flow

Response variables 5 Tray 14 temperature

6 Column overhead pressure

7 Tray 2 temperature

8 Reflux vessel level

9 Butane product flow (top draw)

10 Percentage of C3 in C4

11 Percentage of C5 in C4

12 Tray 31 temperature

13 Reboiler vessel level

14 Bottom draw

15 Percentage of C4 in C5

16 Reboiler temperature

Table 5

Contribution of the rank one component matrices to the predictor and response matrices (FCCU case study)

LV Predictor variables Response variables

This LV Total This LV Total

1 48.45 48.45 28.41 28.41

2 11.92 60.37 5.39 33.81

3 6.95 67.32 0.84 34.64

4 2.87 70.19 1.01 35.65

5 4.45 74.65 0.50 36.15

6 4.54 79.19 0.37 36.52

7 4.19 83.38 0.26 36.78

8 5.44 88.82 0.13 36.91

9 1.29 90.11 0.56 37.46

10 4.38 94.49 0.19 37.66

11 4.93 99.43 0.11 37.77

12 0.57 100 0.04 37.80

Fig. 10. RPLS monitoring charts representing the loss in combustion

air blower capacity (FCCU).
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thirdly leads to a deterioration of the reaction condi-
tions in the riser.
Given the above discussion, most of the predictor

variables contribute to this event leading to a consider-
able change in the relationship between them. This
change gives rise to a considerable increase of the
SPEðX Þ statistic. Since the reaction conditions in the
regenerator and the riser are clearly affected, the SPEðY Þ

statistic is also significant. Since the variables of the air
blowers in particular vary excessively, the overall
variation of the predictor variables is significant and
thus, the T2 statistic variation is significant too.

5.2.2. Fault 2: degradation in the flow of regenerated

catalyst

The corresponding RPLS monitoring charts for this
event, as seen in the data set Fault 2, are presented in
Fig. 11. It can be seen from this figure that the SPEðY Þ

statistic is most dominantly responding to this event.
Physically, any change in regenerated catalyst flow will
primarily affect catalyst-to-feed ratio in the riser,
resulting in a change in the amount of coke deposited
on spent catalyst and subsequently the level of oxygen
usage in the regenerator. Further consequences are
related to the material balance in the standpipe, and
hence its level as well as the reaction conditions in the
reactor.
Given the above discussions, most of the response

variables were affected which explains the dominant
response of the SPEðY Þ statistic. An increase in the T2

and the SPEðX Þ statistic can, however, be noted too.
This is explained by a pressure change in the regenerator
as a consequence of the excess production of carbon
monoxide and carbon dioxide, which leads to a

reduction of the air-flow of the combustion as well as
the lift air blower. A change of the relationship between
the predictor variables is the consequence, which leads
to a significant SPEðX Þ statistic. Since the variation of
the air blower variables is excessive, the T2 statistic is
significant too.

5.2.3. Fault 3: decrease in the heat exchanger coefficient

of the furnace

Fig. 12 presents the RPLS monitoring charts corre-
sponding to the performance degradation of the
furnace, as seen in the data set Fault 3. This figure
shows that the SPEðX Þ statistic is strongly affected by
this event followed by the T2 statistic. Small but
insignificant response can also be noticed from the
SPEðY Þ statistic. A decrease of the heat exchanger
coefficient reduces the amount of heat exchanged with
the consequence of a lower temperature of the outlet
stream. Therefore, fresh feed stream entered the riser
with a lower temperature than expected. This did
not lead to a significant change in the reaction
conditions as the hot catalyst provided the necessary
heat for the endothermic reactions. However, the
parametric model between the predictor and the
response variables cannot be updated with immediate
effect and hence, a small contribution of the SPEðY Þ

statistic can be noticed.
Given the above discussion, the relationships between

the predictor variables changed considerably leading to
a significantly increased SPEðX Þ statistic. Since the drop
in the fresh feed temperature represents an excessive
variation of that variable, the T2 statistic is also
significant.

Fig. 11. RPLS monitoring charts representing the degradation in the

flow of regenerated catalyst (FCCU).

Fig. 12. RPLS monitoring charts representing the decrease in the heat

exchanger coefficient (FCCU).
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5.3. Application of recursive PLS to the distillation

process

Two data sets were considered to demonstrate the
performance of the introduced monitoring scheme. The
first data set illustrates that this process is time varying
and behaves non-stationary. The second data set
presents an example of a severe drop in feed flow and
feed temperature that led eventually to an upset
of the process performance, i.e. the concentration of
Hexane in the top draw and Butane in the bottom draw
exceeded their predefined limits. The first data set
contains 2400 data points and the second data set
contains 980 data points that were recorded at a
sampling interval of 30 s.
The first 450 sampling points were used to identify an

initial regression model for the first data set. The cont-
ribution of the rank one component matrices to the
predictor and response matrices is presented in Table 6.
It can be seen that the first 3 LVs contribute significantly
to the response variables, whilst the 4th LV makes
negligible difference. Hence, 3 LVs are selected for this
process. The window size for determining the confidence
limits for each univariate statistic was selected to include
the past 50 values.
The resultant monitoring statistics are established on

the first data set and presented in Fig. 13. It can be seen
that the SPEðX Þ statistic did not show significant
variations and hence the residuals of the predictor
variables are insignificant at any time. This also implies
that the relationships between the predictor variables
did not change significantly. However, the T2 statistic
presents non-stationary behaviour, which can also be
noticed by the variations of the confidence limits. That
the process is time varying can be seen from the SPEðY Þ

statistic, which does not show the character of stochastic
Chi-Squared distributed signal. In fact, the variations of
the confidence limits indicate that residuals of the
response variables vary with time, compare the value
of the SPEðY) statistic at the 600th sample with that of
the 700th sample for instance.
Since the abnormal process behaviour was recorded

about 350 data points into the data set, the first 300 data
points were used to identify an initial model for the
second data set. This drop in feed and feed temperature

led to a drop in the liquid level at the bottom of the
distillation tower and consequently an increase in its
temperature. Consequently, more Hexane was evapo-
rated and the concentration of Hexane in the top draw
exceeded the predefined limit.
The RPLS monitoring charts are presented in Fig. 14.

The drop of the fresh feed occurred 2 h and 55min
(equal to 350 data points) after the recording began. At
first, the T2 and the SPEðX Þ statistic respond to this
event. With a delay of about 20min (40 data points), the
SPEðY Þ statistic shows a considerably increasing re-
sponse to this event with a duration of approximately
25min until it settles to show very large SPEðY Þ values
thereafter.
The observations from the monitoring charts describe

a physically correct representation of the progression of
this event. The reduced flow of fresh feed as well as the
drop in fresh feed temperature lead gradually to an
increasing temperature of the liquid at the bottom of the
distillation column. Therefore, the temperature mea-
surements in the distillation tower follow the increase in
specific enthalpy at first, followed by a considerable
increase of the Hexane concentration in the top draw. It
should be noted that heat-exchanging processes within

Table 6

Contribution of the rank one component matrices to the predictor and response matrices (industrial distillation process)

LV Predictor variables Response variables

This LV Total This LV Total

1 35.43 35.43 20.21 20.21

2 45.01 80.43 11.09 31.30

3 18.69 99.13 8.39 39.69

4 0.87 100 1.08 40.78

Fig. 13. RPLS monitoring charts representing non-stationary process

behaviour (Distillation process).
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the distillation unit could not be initiated instantly and
therefore a gradual response to the alterations of the
feed conditions occurred.

5.4. Application of recursive MBPLS to the fluid

catalytic cracking unit

The operation of the FCCU suggests dividing the
predictor variables into a block that represent the feed
section and a block that is associated with the air
blowers. The block in which the variables of the feed
section are stored is referred to as block 1 and the block
in which the variables that are associated with the air
blowers are stored is denoted as block 2.
The proposed division of the predictor variables is

expedient since the 6 variables of the feed section
influence primarily the reaction condition in the riser.
Furthermore, the remaining 6 variables of the air
blowers influence mainly the regenerator. Fig. 8 and
Table 3 give a list of the predictor variables. The catalyst
flow connects the reactor with the regenerator and vice
versa. Thus these process units are clearly shown to be
highly interactive. The resultant diagnosis of each of the
three abnormal events is individually presented in the
following subsections.

5.4.1. Loss of combustion air blower capacity

The corresponding monitoring statistics of block 1
and block 2, i.e. the T2 and the SPEðX Þ statistics, are
presented in Figs. 15 and 16, respectively and the SPEðY Þ

statistic is shown in Fig. 17. From these figures, it can be
seen that the most dominant response to this event is
associated with the SPEðX Þ and T2 statistics of block 2
and the SPEðY Þ statistic. In contrast, the T2 and the

SPEðX Þ statistics of block 1 show a small but noticeable
response to this event.
As the variables of the combustion air blower are

stored in block 2 and the variables of the lift air blower
are also affected by this event, the large response of the
block 2 statistics would assist an experienced plant
operator in narrowing down potential causes of this
event. A more detailed discussion of this abnormal
conditions is presented in Section 5.2.

5.4.2. Degradation in the flow of regenerated catalyst

The SPEðX Þ and T2 statistics of block 1 and block 2
are presented in Figs. 18 and 19, respectively, and the
SPEðY Þ is shown in Fig. 20. A strong response to the
degradation of the regenerated catalyst flow is apparent
from the SPEðY Þ statistic. Furthermore, a small response
is also noticeable from the T2 statistic of block 2
and the remaining statistics do not show a significant
response.
As discussed in Section 5.2, this abnormal event

affects mainly the response variables and subsequently
the variables of the air blowers. The provided RMBPLS
monitoring charts therefore give a correct representation
of this event as they reveal a considerable mismatch
between the measured and the predicted response
variables and excessive variation of the variables
corresponding to the air blowers. This would assist an
experienced operator in identifying potential root causes
of this event.

5.4.3. Decrease in the heat exchanger coefficient of the

furnace

The corresponding monitoring charts for this fault are
presented in Figs. 21 and 22 (T2 and SPEðX Þ statistics
for blocks 1 and 2, respectively) and Fig. 23 (SPEðY Þ

statistic). A strong response to this event comes from the
SPEðX Þ statistics of both predictor blocks. In contrast,
the T2 statistic of both predictor blocks and the SPEðY Þ

statistic only show a small but noticeable response. The
fact that both predictor blocks show responses to this
event is a consequence of the super t-scores being
determined on the basis of the whole set of predictor
variables, which can be seen from the multi-block
algorithm in the appendix. Since the p-loading vectors
for each block are determined with respect to the super
t-scores, an abnormal process behaviour that affects
primarily a single predictor block may propagate
through to affect other predictor blocks too. This can
also be observed from the other two examples above,
however, to a much lesser degree. Though both
predictor blocks appear to respond to the performance
deterioration of the furnace, it should be noted that the
response of block 1 is much more significant (by a factor
of 10). On the basis of the RMBPLS monitoring charts,
an experienced operator would be advised to trace the

Fig. 14. RPLS monitoring chart representing the drop in feed and feed

temperature (Distillation process).
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root cause of this event to a problem within the feed
section of the FCCU.

6. Conclusions

In this paper, the monitoring of complex industrial
processes that exhibit non-stationary and time varying
behaviour is discussed. It is shown that monitoring
methods that fall under the conventional MSPC frame-
work give rise to false alarms, thus rendering the
practical implementation of such methods a difficult
task. This is illustrated using two simplified examples.

Fig. 15. RMBPLS monitoring chart for Block 1 (feed section)

representing the loss in combustion air blower capacity (FCCU).

Fig. 16. RMBPLS monitoring chart for Block 2 (air blowers)

representing the loss in combustion air blower capacity (FCCU).

Fig. 17. RMBPLS monitoring chart for response block representing

the loss in combustion air blower capacity (FCCU).

Fig. 18. RMBPLS monitoring chart for Block 1 (feed section)

representing the degradation if the flow of regenerated catalyst

(FCCU).

Fig. 19. RMBPLS monitoring chart for Block 2 (air blowers)

representing the degradation of the flow of regenerated catalyst

(FCCU).
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Furthermore, it is also shown that a recursive adapta-
tion of the employed MSPC model alone, as proposed
by Li et al. (2000), does not necessarily reduce the
number of false alarms if the process shows non-
stationary process behaviour.
To overcome the deficiency of conventional MSPC,

recursive PLS algorithms are considered along with an
adaptation of the confidence limits for each of the
utilised univariate statistics. RPLS is advocated to
RPCA because the process variables are divided into
predictor and response variables, which provides an
enhanced initial diagnosis. The inclusion of an offset
term, as proposed by Qin (1998), as an additional
predictor variable is re-considered and it is concluded
that such an offset term must be included if the process

is time variant. In contrast, non-stationary process
behaviour does not require the inclusion of such an
offset term.
On the basis of the two simple examples, it is

concluded that the application of recursive PLS and
the adaptation of the confidence limits can reduce the
number of false alarms considerably-presumably whilst
still being able to detect faults. As a further contribution
of this paper, it is demonstrated that the recursively
updated PLS model can be integrated into the modified
multi-block PLS algorithm.
The introduced monitoring scheme is applied to a

simulation of a fluid catalytic cracking unit (FCCU) and
an industrial distillation process. The FCCU simulator
was programmed to include several pre-programmed

Fig. 20. RMBPLS monitoring chart for the response block represent-

ing the degradation if the flow of regenerated catalyst (FCCU).

Fig. 21. RMBPLS monitoring chart for Block 1 (feed section)

representing the decrease in the heat exchanger coefficient of the

furnace (FCCU).

Fig. 22. RMBPLS monitoring chart for Block 2 (air blowers)

representing the decrease in the heat exchanger coefficient of the

furnace (FCCU).

Fig. 23. RMBPLS monitoring chart for response block representing

the decrease in the heat exchanger coefficient of the furnace (FCCU).
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faults of which a 5% loss of combustion air
blower capacity, a degradation of the flow of
regenerated catalyst and a 5% decrease in the
heat exchanger coefficient of the furnace are considered
in this paper. The feed of the industrial distillation
process can drop drastically and hence affect the
concentrations of impurities within the product stream.
An example of such an event was recorded and
investigated.
Both application studies demonstrated that the

introduced monitoring approach did not raise false
alarms and that the investigated abnormal conditions
were detected. With RPLS, the monitoring charts gave a
clear indication as to where the predictor and/or the
response variables corresponded to the abnormal events
under investigation. Furthermore, the application of
RMBPLS showed that division of the predictor
variables of the FCCU led to a correct diagnosis of
the contributing blocks. Hence, an experienced operator
could be assisted to reduce the number of possible
causes of the abnormal events.
An additional benefit of the introduced monitoring

approach is that only a relatively small number of data
are required to identify an initial process model. In
contrast, applications of conventional MSPC ap-
proaches require a substantial amount of operating
data to guarantee that normal process variation is
captured in sufficient detail, otherwise, false alarms
may be the consequence. Furthermore, the sensitivity
of this monitoring approach can be influenced by the
basis of the forgetting factor used for updating the PLS
model and the window size for computing the con-
fidence limits for the monitoring charts. This allows the
‘‘speed’’ of adaptation to be adjusted so that abnormal
process behaviour is still detectable by the monitoring
approach.
It should be noted that the window length for an

adaptive estimation of the confidence limits has to be
selected with care. If the window length is too short, the
confidence limits are adapted very quickly and even
abnormal behaviour may be adapted, which, in fact,
should be detected. In contrast, if the window
length is too long, the adaptation of the confidence
limits is very slow and consequently, false alarms may
occur. The method proposed in this paper is to apply the
RPLS and the RMBPLS approach to a second reference
data set. The number of violations of the adaptive
confidence limits can then be recorded versus the
window length and form a criterion to determine the
window length.
Future work is focused on utilising contribution

charts for improving the diagnosis of abnormal
process behaviour and to further compare the intro-
duced monitoring approach with the RPCA approach
by Li et al. (2000). Another aspect that requires
attention is that of auto-correlated process data, which

often occur in industrial processes. Therefore, further
work is focused on how to treat auto-correlated process
data.
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Appendix. Modification of the MBPLS algorithm

The multi-block PLS algorithm is presented below.
The changes to achieve super t-score vectors of unit
length are summarised in the box (Westerhuis et al.,
1998).

1 Mean centre and appropriately
scale X1; X2 and Y

2 Set u to the first column of Y
3 Loop until convergence of u
3.1 Determine block weight vector

for X1 block:
w1 ¼

XT
1 u

uTu

3.2 Scale first block weight vector to
unit length:

w1 ¼
w1

8w182

3.3 Calculate t-score vector for X1

block:
t1 ¼ X1w1

3.4 Determine block weight vector
for X2 block:

w2 ¼
XT
2 u

uTu

3.5 Scale second block weight vector
to unit length:

w2 ¼
w2

8w282

3.6 Calculate t-score vector for X2

block:
t2 ¼ X2w2

3.7 Combine block t-score vectors to
super block T:

T ¼ ½t1jt2�

3.8 Determine block weight vector: wT ¼
TTu

uTu

X. Wang et al. / Control Engineering Practice 11 (2003) 613–632 631



3.9 Determine super t-score vector: tT ¼ T 
 wT

3.10 Adjust length of super block
weight vector:

wT ¼
wT

8tT82

3.11 Set super t-score vector to unit
length:

tT ¼
tT

8tT82

3.12 Calculate loading vector for
response block:

q=
YT 
 tT

8YT 
 tT82

3.13 Calculate new score vector of
response block:

u ¼ Y 
 q

4 Determine loading vector for x1
block:

p1 ¼ X
T
1 tT

5 Determine loading vector for x2
block:

p2 ¼ X
T
2 tT

6 Calculate regression coefficient
for score model:

b ¼ uTtT

7 Deflate X1 block using super t-
score vector:

X1 ¼
X1 � tTpT1

8 Deflate X2 block using super t-
score vector:

X2 ¼
X2 � tTpT2

9 Deflate response block: Y ¼ Y� btTq
T

10 Goto step 2 or terminate
algorithm
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